
SITS II B.TECH II SEM CSE (IOT)

SENSOR & DEVICES LAB

SITS II B.TECH II SEM CSE (IOT)

1. Connect an LED to GPIO pin 25 and control it Through command line

Hardware:

1. Connect the anode (longer leg) of the LED to a current-limiting resistor (220-470 ohms is

typical) and then connect the other end of the resistor to GPIO pin 25 (physical pin 22).

2. Connect the cathode (shorter leg) of the LED to the ground (GND) pin (physical pin 6) on the

Raspberry Pi.

Software:

1. First, ensure you have the necessary libraries installed. Open a terminal on your Raspberry Pi

and run the following commands:

sudo apt-get update

sudo apt-get install python3-gpiozero

Controlling the LED via Command Line:

 To turn on the LED from the command line, run:

gpiozero-output 25 1

 To turn off the LED from the command line, run:

gpiozero-output 25 0

Controlling the LED via Python Program:

1. Create a Python script (e.g., led_control.py) to control the LED:

from gpiozero import LED

from time import sleep

led = LED(25)

while True:

 led.on()

 sleep(1)

 led.off()

 sleep(1)

SITS II B.TECH II SEM CSE (IOT)

 Run the Python script:

 python3 led_control.py

This script will turn the LED on for one second, then off for one second, creating a blinking

effect. You can stop the script by pressing Ctrl + C.

SITS II B.TECH II SEM CSE (IOT)

2. Connect an LED to GPIO pin 24 and a Switch to GPIO 25 and control

the LED with the switch.

1. Connect the LED's longer leg (anode) to GPIO pin 24 and the shorter leg (cathode) to a current-

limiting resistor (e.g., 220-470 ohms), and connect the other end of the resistor to a ground

(GND) pin on the Raspberry Pi.

2. Connect one end of a push-button switch to GPIO pin 25 and the other end to a ground (GND)

pin on the Raspberry Pi.

3. Save the following Python script as led_switch_control.py on your Raspberry Pi:

import RPi.GPIO as GPIO

import time

GPIO pin numbers for the LED and switch

LED_PIN = 24

SWITCH_PIN = 25

Setup GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(LED_PIN, GPIO.OUT)

GPIO.setup(SWITCH_PIN, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Function to control the LED state

def set_led(state):

 GPIO.output(LED_PIN, state)

try:

 while True:

 # Read the state of the switch

 switch_state = GPIO.input(SWITCH_PIN)

 if switch_state == GPIO.LOW:

 set_led(True) # Turn on the LED if the switch is pressed

 else:

 set_led(False) # Turn off the LED if the switch is not pressed

 time.sleep(0.1) # Small delay to debounce the switch

except KeyboardInterrupt:

 pass

Clean up GPIO on program exit

GPIO.cleanup()

SITS II B.TECH II SEM CSE (IOT)

1. Open a terminal on your Raspberry Pi and navigate to the folder where you saved

led_switch_control.py.

2. Run the script using the command:

python led_switch_control.py

3. When you press the push-button switch connected to GPIO pin 25, the LED connected to

GPIO pin 24 will turn on. Releasing the switch will turn off the LED.

SITS II B.TECH II SEM CSE (IOT)

3 THE STATE OF LED SHOULD TOGGLE WITH EVERY PRESS OF

THE SWITCH USE DHT11 TEMPERATURE SENSOR AND PRINT THE

TEMPERATURE AND HUMIDITY OF THE ROOM WITH AN

INTERVAL OF 15 SECONDS

1. Connect the DHT11 sensor to a free GPIO pin (e.g., GPIO 18) on your Raspberry Pi. Connect

the sensor's VCC pin to 3.3V, the data pin to the chosen GPIO pin, and the sensor's GND pin to

ground.

2. Save the following Python script as led_switch_dht11.py on your Raspberry Pi:

import RPi.GPIO as GPIO

import dht11

import time

GPIO pin numbers for the LED, switch, and DHT11 sensor

LED_PIN = 24

SWITCH_PIN = 25

DHT11_PIN = 18

Setup GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(LED_PIN, GPIO.OUT)

GPIO.setup(SWITCH_PIN, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Initialize DHT11 sensor instance

dht_sensor = dht11.DHT11(pin=DHT11_PIN)

Function to control the LED state

def set_led(state):

 GPIO.output(LED_PIN, state)

Function to read temperature and humidity

def read_dht11():

 result = dht_sensor.read()

 if result.is_valid():

 return result.temperature, result.humidity

 else:

 return None, None

led_state = False

try:

 while True:

SITS II B.TECH II SEM CSE (IOT)

 # Read the state of the switch

 switch_state = GPIO.input(SWITCH_PIN)

 if switch_state == GPIO.LOW:

 led_state = not led_state # Toggle the LED state on switch press

 set_led(led_state)

 temperature, humidity = read_dht11()

 if temperature is not None and humidity is not None:

 print(f"Temperature: {temperature}°C, Humidity: {humidity}%")

 time.sleep(0.1) # Small delay to debounce the switch

except KeyboardInterrupt:

 pass

Clean up GPIO on program exit

GPIO.cleanup()

3. Open a terminal on your Raspberry Pi and navigate to the folder where you saved

led_switch_dht11.py.

4. Run the script using the command:

python led_switch_dht11.py

Now, with every press of the push-button switch connected to GPIO pin 25, the LED connected

to GPIO pin 24 will toggle its state (on/off). Additionally, the script will read the temperature

and humidity from the DHT11 sensor connected to GPIO pin 18 and print the values every 15

seconds.

Please note that the DHT11 sensor may not be the most accurate temperature and

humidity sensor available. If precision is important, you might consider using a more accurate

sensor like the DHT22 or the BME280. Also, make sure you have the dht11 library installed on

your Raspberry Pi. If not, you can install it using the following command:

pip install dht11

SITS II B.TECH II SEM CSE (IOT)

4.CREATE A TRAFFIC LIGHT SIGNAL WITH THREE COLORED LIGHTS (RED,

ORANGE AND GREEN) WITH A DUTY CYCLE OF 5-2-10 SECONDS.

Traffic light signal with three colored lights (Red, Orange, and Green) using a Raspberry Pi, you

can utilize the GPIO pins to control the LEDs. You can achieve the desired duty cycle by

controlling the timings for each LED state. Below is an example of how you can do this:

1. Connect three LEDs to GPIO pins on the Raspberry Pi. For this example, let's assume:

 Red LED: GPIO 17

 Orange LED: GPIO 18

 Green LED: GPIO 27

2. Here's a Python script to control the traffic light with the specified duty cycles:

import RPi.GPIO as GPIO

import time

GPIO pin numbers for the LEDs

RED_LED_PIN = 17

ORANGE_LED_PIN = 18

GREEN_LED_PIN = 27

Setup GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(RED_LED_PIN, GPIO.OUT)

GPIO.setup(ORANGE_LED_PIN, GPIO.OUT)

GPIO.setup(GREEN_LED_PIN, GPIO.OUT)

def set_traffic_light_state(red_state, orange_state, green_state):

 GPIO.output(RED_LED_PIN, red_state)

 GPIO.output(ORANGE_LED_PIN, orange_state)

 GPIO.output(GREEN_LED_PIN, green_state)

try:

 while True:

 # Red light

 set_traffic_light_state(True, False, False)

 time.sleep(5)

 # Orange light

 set_traffic_light_state(False, True, False)

 time.sleep(2)

 # Green light

SITS II B.TECH II SEM CSE (IOT)

 set_traffic_light_state(False, False, True)

 time.sleep(10)

except KeyboardInterrupt:

 pass

Clean up GPIO on program exit

GPIO.cleanup()

3. Open a terminal on your Raspberry Pi and navigate to the folder where you saved the script.

4. Run the script using the command:

python traffic_light.py

This script will simulate a traffic light with the specified duty cycles. The LEDs will turn on and

off based on the timing sequence: 5 seconds for the red light, 2 seconds for the orange light, and

10 seconds for the green light. The cycle will then repeat.

SITS II B.TECH II SEM CSE (IOT)

5.USE LIGHT DEPENDENT RESISTOR (LDR) AND CONTROL AN LED THAT

SHOULD SWITCH-ON/OFF DEPENDING ON THE LIGHT.

To control an LED using a Light Dependent Resistor (LDR) to switch it on/off depending

on the light intensity, follow these steps:

Circuit Connection:

1. Connect one leg of the LDR to a GPIO pin (e.g., GPIO 18) on the Raspberry Pi.

2. Connect the other leg of the LDR to a voltage divider setup. Connect a resistor (e.g., 10k ohms)

from the LDR's other leg to the ground (GND) pin of the Raspberry Pi.

3. Connect an LED to another GPIO pin (e.g., GPIO 17) on the Raspberry Pi. Connect its anode

(longer leg) to the GPIO pin and the cathode (shorter leg) to a current-limiting resistor (e.g., 220

ohms), then connect the other end of the resistor to the ground (GND) pin on the Raspberry Pi.

Python Program:

1. Make sure you have the RPi.GPIO library installed. If not, you can install it using the command:

pip install RPi.GPIO

2. Save the following Python script as ldr_led_control.py on your Raspberry Pi:

import RPi.GPIO as GPIO

import time

GPIO pin numbers for the LDR and LED

LDR_PIN = 18

LED_PIN = 17

Setup GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(LDR_PIN, GPIO.IN)

GPIO.setup(LED_PIN, GPIO.OUT)

def read_light_intensity():

 return GPIO.input(LDR_PIN)

try:

 while True:

 light_intensity = read_light_intensity()

 if light_intensity == GPIO.LOW:

SITS II B.TECH II SEM CSE (IOT)

 GPIO.output(LED_PIN, GPIO.HIGH) # Turn on the LED in low light

 else:

 GPIO.output(LED_PIN, GPIO.LOW) # Turn off the LED in bright light

 time.sleep(0.5) # Add a small delay for stability

except KeyboardInterrupt:

 pass

Clean up GPIO on program exit

GPIO.cleanup()

3. Open a terminal on your Raspberry Pi and navigate to the folder where you saved the script.

4. Run the script using the command:

python ldr_led_control.py

The LED connected to GPIO 17 will turn on when the LDR's light intensity is low (dark) and

turn off when the LDR detects high light intensity (bright).

SITS II B.TECH II SEM CSE (IOT)

6.CONVERT AN ANALOG VOLTAGE TO DIGITAL VALUE AND SHOW IT ON THE

SCREEN

To convert an analog voltage to a digital value using a Raspberry Pi, you'll typically use

an Analog to Digital Converter (ADC) chip. One commonly used ADC chip is the MCP3008,

which is a 10-bit ADC that can read up to 8 analog inputs.

Here's how you can set up the MCP3008 ADC and display the converted digital value on the

screen using a Python program:

Circuit Connection:

1. Connect the VDD and VREF pins of the MCP3008 to 3.3V.

2. Connect the VREF of the MCP3008 to a voltage source that represents the maximum voltage

you want to measure (e.g., 3.3V for the full range).

3. Connect the AGND and DGND pins of the MCP3008 to the ground (GND).

4. Connect the CLK, DOUT, DIN, and CS pins of the MCP3008 to GPIO pins on the Raspberry Pi

(e.g., CLK to GPIO 11, DOUT to GPIO 9, DIN to GPIO 10, and CS to GPIO 8).

5. Connect an analog voltage source (e.g., a potentiometer) to one of the analog inputs (e.g., CH0)

of the MCP3008.

Python Program:

1. Install the spidev library by running the command: pip install spidev

2. Save the following Python script as adc_read.py on your Raspberry Pi:

import spidev

import time

Create an instance of the SPI device

spi = spidev.SpiDev()

spi.open(0, 0) # (bus, device)

def read_adc(channel):

 # Read analog data from the specified channel

 adc_data = spi.xfer2([1, (8 + channel) << 4, 0])

 digital_value = ((adc_data[1] & 3) << 8) + adc_data[2]

 return digital_value

try:

 while True:

 # Read analog data from channel 0

 adc_value = read_adc(0)

SITS II B.TECH II SEM CSE (IOT)

 # Print the digital value

 print(f"Analog value: {adc_value}")

 time.sleep(1)

except KeyboardInterrupt:

 pass

spi.close()

3. Open a terminal on your Raspberry Pi and navigate to the folder where you saved the script.

4. Run the script using the command:

python adc_read.py

This script will read the analog value from the specified channel of the MCP3008 ADC and

print the corresponding digital value on the screen.

SITS II B.TECH II SEM CSE (IOT)

7.CREATE AN APPLICATION THAT HAS THREE LEDS (RED, GREEN AND

WHITE). THE LEDS SHOULD FOLLOW THE CYCLE (ALL OFF, RED ON, GREEN

ON, AND WHITE ON) FOR EACH CLAP (USE SOUND SENSOR).

Hardware Components:

1. Raspberry Pi (any model with GPIO pins)

2. Breadboard

3. Sound sensor module (e.g., KY-038)

4. Red, Green, and White LEDs

5. Resistors (220Ω recommended for each LED)

6. Jumper wires

Software Components:

1. Raspbian OS installed on your Raspberry Pi

2. Python programming language

3. GPIO library (usually pre-installed with Raspbian)

Steps:

1. Wiring:
 Connect the power (VCC) and ground (GND) pins of the sound sensor to the 3.3V and

GND pins on the Raspberry Pi.

 Connect the signal (OUT) pin of the sound sensor to a GPIO pin (e.g., GPIO23).

 Connect each LED anode (longer leg) to a separate GPIO pin with a resistor in series.

 Connect all LED cathodes (shorter legs) to a common ground (GND) pin.

2. Code: Create a Python script to control the LEDs based on the clap detected by the sound

sensor.

import RPi.GPIO as GPIO

import time

GPIO pin numbers for LEDs and sound sensor

RED_LED_PIN = 17

GREEN_LED_PIN = 18

WHITE_LED_PIN = 27

SOUND_SENSOR_PIN = 23

Setup GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(RED_LED_PIN, GPIO.OUT)

SITS II B.TECH II SEM CSE (IOT)

GPIO.setup(GREEN_LED_PIN, GPIO.OUT)

GPIO.setup(WHITE_LED_PIN, GPIO.OUT)

GPIO.setup(SOUND_SENSOR_PIN, GPIO.IN)

Function to control LED states

def set_leds(red, green, white):

 GPIO.output(RED_LED_PIN, red)

 GPIO.output(GREEN_LED_PIN, green)

 GPIO.output(WHITE_LED_PIN, white)

Initial state: All LEDs off

set_leds(False, False, False)

try:

 while True:

 # Wait for the sound sensor to detect a clap

 GPIO.wait_for_edge(SOUND_SENSOR_PIN, GPIO.RISING, timeout=5000)

 # Cycle through LED states

 set_leds(False, False, False) # All Off

 time.sleep(1)

 set_leds(True, False, False) # Red On

 time.sleep(1)

 set_leds(False, True, False) # Green On

 time.sleep(1)

 set_leds(False, False, True) # White On

 time.sleep(1)

except KeyboardInterrupt:

 pass

Clean up GPIO on program exit

GPIO.cleanup()

Run the Script: Save the Python script on your Raspberry Pi (e.g., led_clap_app.py), and run it

using the command:

python3 led_clap_app.py

SITS II B.TECH II SEM CSE (IOT)

This script waits for a clap sound detected by the sensor, and upon each clap, it cycles through

turning on the red, green, and white LEDs with a brief delay between each state. The cycle starts

again when another clap is detected. Remember to adjust GPIO pin numbers according to your

wiring.

SITS II B.TECH II SEM CSE (IOT)

8.CONTROL A 230V DEVICE (BULB) WITH RASPBERRY PI USING A RELAY

Controlling a high-voltage device like a 230V bulb using a Raspberry Pi requires a relay module,

as the Raspberry Pi's GPIO pins cannot directly handle such high voltages. Here's how to set up

the connection and write a Python program to control the bulb using a relay module:

Circuit Connection:

1. Connect the VCC and GND pins of the relay module to the 5V and GND pins on the Raspberry

Pi, respectively.

2. Connect the IN pin of the relay module to a GPIO pin on the Raspberry Pi (e.g., GPIO 17).

3. Connect the COM (Common) and NO (Normally Open) terminals of the relay to the two

terminals of the bulb.

4. Connect the two terminals of the bulb to the AC power source (230V).

Python Program:

1. Save the following Python script as relay_control.py on your Raspberry Pi:

import RPi.GPIO as GPIO

import time

GPIO pin number for the relay control

RELAY_PIN = 17

Setup GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(RELAY_PIN, GPIO.OUT)

Function to turn the relay on or off

def set_relay(state):

 GPIO.output(RELAY_PIN, state)

try:

 while True:

 print("1. Turn on the bulb")

 print("2. Turn off the bulb")

 print("3. Quit")

 choice = input("Enter your choice (1/2/3): ")

 if choice == '1':

SITS II B.TECH II SEM CSE (IOT)

 set_relay(True) # Turn on the bulb

 elif choice == '2':

 set_relay(False) # Turn off the bulb

 elif choice == '3':

 break

 else:

 print("Invalid choice. Please enter 1, 2, or 3.")

except KeyboardInterrupt:

 pass

Turn off the relay and clean up GPIO on program exit

set_relay(False)

GPIO.cleanup()

2. Open a terminal on your Raspberry Pi and navigate to the folder where you saved the script.

3. Run the script using the command:

python relay_control.py

The script will display a menu that allows you to turn the bulb on or off, and you can quit the

script by selecting option 3.

SITS II B.TECH II SEM CSE (IOT)

9. SWITCH ON AND SWITCH OF A DC MOTOR BASED ON THE POSITION OF A

SWITCH.

Controlling a DC motor based on the position of a switch using a Raspberry Pi involves

using a relay module or an H-bridge motor driver. In this example, I'll demonstrate using a relay

module to control the motor. Here's how to set up the connection and write a Python program:

Circuit Connection:

1. Connect the VCC and GND pins of the relay module to the 5V and GND pins on the Raspberry

Pi, respectively.

2. Connect the IN pin of the relay module to a GPIO pin on the Raspberry Pi (e.g., GPIO 17).

3. Connect the COM (Common) and NO (Normally Open) terminals of the relay module to the

terminals of the DC motor.

4. Connect the terminals of the DC motor to a separate power source suitable for the motor's

voltage and current requirements (e.g., a battery).

Python Program:

1. Save the following Python script as motor_control.py on your Raspberry Pi:

import RPi.GPIO as GPIO

import time

GPIO pin number for the relay control

RELAY_PIN = 17

Setup GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(RELAY_PIN, GPIO.OUT)

Function to turn the relay on or off

def set_relay(state):

 GPIO.output(RELAY_PIN, state)

try:

 while True:

 print("1. Turn on the motor")

 print("2. Turn off the motor")

 print("3. Quit")

 choice = input("Enter your choice (1/2/3): ")

SITS II B.TECH II SEM CSE (IOT)

 if choice == '1':

 set_relay(True) # Turn on the motor

 elif choice == '2':

 set_relay(False) # Turn off the motor

 elif choice == '3':

 break

 else:

 print("Invalid choice. Please enter 1, 2, or 3.")

except KeyboardInterrupt:

 pass

Turn off the relay and clean up GPIO on program exit

set_relay(False)

GPIO.cleanup()

2. Open a terminal on your Raspberry Pi and navigate to the folder where you saved the script.

3. Run the script using the command:

python motor_control.py

The script will display a menu that allows you to turn the motor on or off, and you can quit the

script by selecting option 3

SITS II B.TECH II SEM CSE (IOT)

10. CONTROL A 230V DEVICE USING A THRESHOLD TEMPERATURE, USING

TEMPERATURE SENSOR.

To control a 230V device based on a threshold temperature using a temperature sensor and a

Raspberry Pi, you'll need a temperature sensor (such as the DS18B20) and a relay module. Here's

how to set up the connection and write a Python program:

Circuit Connection:

1. Connect the data pin of the temperature sensor to GPIO 4 (BCM numbering) on the Raspberry

Pi.

2. Connect the VCC and GND pins of the temperature sensor to 3.3V and GND on the Raspberry

Pi, respectively.

3. Connect the VCC and GND pins of the relay module to 5V and GND on the Raspberry Pi,

respectively.

4. Connect the IN pin of the relay module to a GPIO pin on the Raspberry Pi (e.g., GPIO 17).

5. Connect the COM (Common) and NO (Normally Open) terminals of the relay module to the

device you want to control (e.g., a 230V device).

Python Program:

1. Enable the 1-Wire interface for the DS18B20 temperature sensor:

Open a terminal and enter the following commands:

. sudo raspi-config

1. Navigate to Interface Options > 1-Wire and enable it. Reboot if prompted.

2. Save the following Python script as temperature_control.py on your Raspberry Pi:

import RPi.GPIO as GPIO

import time

import os

GPIO pin number for the relay control

RELAY_PIN = 17

Path to the DS18B20 sensor data

SENSOR_PATH = "/sys/bus/w1/devices/28-*/w1_slave"

Threshold temperature in Celsius

THRESHOLD_TEMPERATURE = 25.0

Setup GPIO

SITS II B.TECH II SEM CSE (IOT)

GPIO.setmode(GPIO.BCM)

GPIO.setup(RELAY_PIN, GPIO.OUT)

Function to turn the relay on or off

def set_relay(state):

 GPIO.output(RELAY_PIN, state)

Function to read temperature from the DS18B20 sensor

def read_temperature():

 try:

 sensor_file = open(SENSOR_PATH, "r")

 lines = sensor_file.readlines()

 sensor_file.close()

 # Extract temperature from the second line

 temperature_str = lines[1].strip().split(" ")[-1]

 temperature = float(temperature_str[2:]) / 1000.0

 return temperature

 except:

 return None

try:

 while True:

 temperature = read_temperature()

 if temperature is not None:

 print(f"Current temperature: {temperature:.2f}°C")

 if temperature >= THRESHOLD_TEMPERATURE:

 set_relay(True) # Turn on the device

 print("Device turned on")

 else:

 set_relay(False) # Turn off the device

 print("Device turned off")

 else:

 print("Error reading temperature")

 time.sleep(5)

except KeyboardInterrupt:

 pass

SITS II B.TECH II SEM CSE (IOT)

Turn off the relay and clean up GPIO on program exit

set_relay(False)

GPIO.cleanup()

3. Open a terminal on your Raspberry Pi and navigate to the folder where you saved the script.

4. Run the script using the command:

python temperature_control.py

We will read the temperature from the DS18B20 sensor and control the 230V device using the

relay module based on the specified threshold temperature. Make sure to adjust the GPIO pin

numbers, sensor path, and other settings based on your actual setup.

